Abstract:
Enterprise SSDs continue to be the biggest growth sector in the SSD market. Although SSDs are believed to be far too costly to be used in many other computer applications, the enterprise market’s focus on payback makes it different from other SSD markets. Objective Analysis explains why and how SSDs continue to grow more rapidly in the enterprise market than in other sectors, and provides detailed unit shipment forecasts for SSDs into each of the major enterprise markets.

This study thoroughly explores several enterprise server applications and explains the appeal of SSDs in each, based inputs that Objective Analysis has learned from interviews with numerous server manufacturers and enterprise SSD users. Each end application is modeled with a unit shipment forecast and these are used to derive consumption forecasts. The total is rolled up into a single unit shipment and revenue forecast for SSDs in the enterprise by interface.

Contents:
Executive Summary
SSDs in the Enterprise
 Enterprise SSD Market Evolution
 SSDs vs. High-Performance HDD Arrays
Enterprise Needs by Application Type
 Data Centers
 Real-Time Data/Feed Processing
 Contextual Web Advertising
 Data Warehousing
 Outlook Exchange Servers
 Internet Server Caches
 Transaction Processing Systems
 Charge Card Processing
 Reservations Systems
 Algorithmic Trading
 Currency Exchange and Arbitrage
 Banking
 Other Real Time Transaction Processing Systems
 Virtualized Systems
 Virtualized Desktops
Video
 Video Production
 Real-Time Video
 Video on Demand (VOD)
 Video Surveillance
Science & Engineering
 Nuclear Fission Models
 Genome Sequencing
 Weather/Life Sciences
 Software Development
 Electronic Design Automation & Project Modeling
 Aerodynamics Design
Comparing SSDs to HDDs
 The Role of Interface Speeds
 Interface Types
 SAS
 Fibre Channel
 PCIe
 SATA
 SSD-Specific Commands
 SMART
 Trim
 Emerging Commands
SSD vs. HDD Performance
 IOPS
 IOPS per Dollar
 IOPS per Watt
 The Role of Internal Channels
 Bandwidth
 Latency
Reducing Power by Increasing Speed
 Comparing SSD and HDD Power States
 Power-Down Idle
 Side Impact on System Idle Times
 Less Cooling
Reliability: HDDs vs. SSDs
 De-Bunking HDD Reliability Myths
 SSD Reliability: NAND Flash Endurance
 When an SSD Dies
 Fewer Devices = Fewer Failures
Saving Cost with SSDs
 Less Memory
 Reduced HDD Count
 Server and Software Reduction
 Power & Cooling Savings
 Smaller Footprint
Shock & Vibration in the Enterprise

SSD Weaknesses
- Wear-Out
- Internal Write Amplification
- Very Slow Writes
 - Performance Inconsistencies
 - Larger Transfers are (Mostly) Slower than Smaller Ones
 - Read/Write Workload Impacts Speed
 - Past Demands May Slow Future Performance
- Speed Varies with Use

Standards for SSDs
- International Committee for Information Technology Standards (INCITS)
- Serial ATA International Organization (SATA-IO)
- Non-Volatile Memory Express (NVMe)
- Storage Networking Industry Association (SNIA)
- Joint Electron Device Engineering Council (JEDEC)
- International Disk Drive Equipment & Materials Association (IDEMA)
- Solid State Drive Alliance (SSDA)

Dampers to Adoption
- Price per Gigabyte
- Concerns about Wear
- Alternatives to Using SSDs
 - Large DRAM
 - Enterprise HDDs
 - Short-Stroked or De-Stroked HDDs
 - RAID Systems & Striping

Managing SSDs
- Managing Hot and Cold Data
- Where Do SSDs Belong in the System?

Price Outlook
- Conversion from SLC to MLC NAND
- Reduced Overprovisioning
- Smaller & Cheaper DRAM Buffers
- Controller Prices Will Decline
- Enterprise SSD Price Forecast

Total Cost of Ownership
- SNIA TCO Model Omissions

Application Forecasts
- Transaction Processing Systems
- Virtualized Systems
- Data Centers
- Video
- Science & Engineering

Combined Forecast
- Combined Application Forecast
- Forecast by Interface
SSD Interface Forecast Assumptions
Methodology